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It is shown in this work that [he effect of changes in the temperature field may be replaced at 
certain conditions by a change in the coefficient a j in the relation for the rate constant In k = 

= al - az / T. This fact is of great importance, e.g. for modelling the course of an noniso
thermal reaction, as it decreases considerably the extent of necessary experiments or calculations. 

Let us follow the course of a chemical reaction proceeding nonisothermally in the solid phase . 
The temperature field in the region considered is determined completely or largely by heat transfer 
at the boundary of this region and it is of an unsteady type. First we will show conclusions which 
we want to arrive at on a simple case of a chemical reaction of the first order A -->- B proceeding 
in an infinite slab heated or cooled at its both ends. Let the initial concentration of component A be 

c = Co in time S = 0 (1) 

and let the reaction proceed according to the well-known differential equation 

dc/ dS = - k. c , (2) 

where c is the concentration of component A in time S, k is the rate constant with the temperature 
dependence given by the relation 

(3) 

Tis absolute temperature, al and az constants. Let the temperature in the slab obey the equation 
for heat conduction 

(4) 

where x is the distance from the central plane of the slab with a half-width r. The quantity a is 
the thermal diffusivity of the solid phase. Heat transfer at the system boundary is described 
by the coefficient of heat transfer C( and by the heat conductivity coefficient of the system J.; 
the external temperature field is characterized by two constant temperatures, e.g. a maximum 
temperature (heating temperature) t z and a minimum temperature (cooling temperature) t 1 . 

Concentration c is according to the description of the process a function of 12 quantities on the 
whole. Three of them are variables: time S, temperature t(T) and local coordinate x . The rest 
of them are parameters: the initial concentration co' constants a l and az in Eq. (3) expressing the 
temperature dependence of the rate constant, heat conductivity J., thermal diffusivity a, heat 
transfer coefficient c(, characteristic parameters of the external temperature field t land t 2 and 
the half-width of the slab r. So we have 
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(5) 

A considerable simplification of the problem may be achieved by arranging all equations 
into a dimensionless form. Currently we use the dimensionless time e = as/r2 , the dimen
sionless longitudinal coordinate X = x/r, the dimensionless heat transfer coefficient Nu = rxr/)., 
the dimensionless coefficient of reaction rate K = ak/r2 and the dimensionless concentration 
C = c/co. The dimensionless temperature S = (t - t 1)/ At, where At = f2 - t l' is used less 
usually. 

Original Eqs (1) - (4), which describe the problem, assume the following dimensionless form 

dC/de = - K. C, (6) 
with the initial condition 

C = 1 for e = 0, (7) 

(8) 
where 

as = (273 deg + t 1)/ At, (9) 
and finally 

(10) 

with the field boundary at X = ± 1. 
As a result of this transformation into the dimensionless form, five from original nine parameters 

have been removed: the dimensionless concentration C is now a function of only four dimension
less parameters, namely of the Nusselt number Nu and of the coefficients a3 , a4 and as in Eq. (8) 
for the rate constant; three variables X , e and S remain 

(11) 

Coefficients a4 and as are of course according to Eq. (9) connected with both the rate of the 
chemical reaction and the temperature field in the system: 

as = (273 + f 1 )/ tlt, 

This fact, besides the more complicated form of dependence (8), constitutes a probable reason 
for the rare usage of the dimensionl.ess temperature S. Despite this, it is very useful in our case 
as it "absorbs" one parameter of the original system. 

A further important aspect refers to the mutual interchangeability of the effects of temperature 
and the reaction rate. Therefrom it follows that during a mathematical modelling (or an experi
mental investigation) of a nonisothermal chemical reaction we can study with the single parameter 
a3 the effects of changes in both the temperature field and the rate constant, in every case at least 
approximately. 

Let us investigate for example the effect of "shifting" the temperature field so that the original 
temperature parameters f 1, t2 change to ti, t! . This change does not affect at all the dimensionless 
temperature field, which, according to its definition, remains unchanged. It will, however, mani
fest itself in changes of constants a4 , as which depend on t 1 , t2 . Let the new values of these con
stants be a:, a!. The second term of the rhs of Eq. (8) may be rewritten as: 

(12) 
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where m = a2[/1' - 11 + S(ll.!* """:" d/)] 

(273 + Ii' + Sd/*) (273 + 11 + SM)· 
(13) 

The quantity m is indeed a function of the temperature variable S, nevertheless the value 
of m may be practically both considerably low and sufficiently constant in a wide range of the 
temperature S. Let us admit that this is the case and that we can assume m = constant. Eq. (8) 
can be then written in the form 

(14) 

A shift (linear transformation) of the temperature field does not manifest itself in the dimen
sionless temperature field, but only in a change in the coefficient a3 in the expression for the re
action rate constant; the coefficients a4' as remain unchanged. At modelling the process we need 
not thus distinguish between the effects of changes in the temperature field and in the coefficient 
a

3 
and we can model both effects only by changes in a3 . This decreases in fact the number of 

modelled parameters by one, which might save considerably the computer time or experimental 

expenses. 

Example: Let the original temperature field be determined by external temperatures tl = 27°C, 
t2 = 167°C, or M = 140°C. We increase the temperature '1 by lOoC, 12 by 20°C, so that ti' = 

= 37°C, Ii = 187°C, dt* = 150°C, and the values of m/a2 according to relation (13) for different 
dimensionless temperatures S are in Table I: 

TABLE I 

Dependence of m/a2 on the Dimensionless Temperature 

S 0 0·2 0·4 0·6 0·8 

104 • m/a2 1·11 1-10 1·08 1·05 1·02 0·99 

The proposed arrangement.is very useful and practically it is quite sufficient even for consider

able changes in m (ref. l
). 

Before all, the form of the reaction field is not substantial for our formulation. For a more 
complicated shape of the system than that of an infinite slab (or a similar onedimensional field), 
further longitudinal simplexes L 1, L2 .. . appear which characterize the shape of the system. 
Even a more complicated reaction course does not change anything in our considerations. It is 
only the form of the dependence of the reaction rate constant on temperature as expressed by 
Eq. (3) or dimensionlessly by Eq. (8) that is substantial. Another form of this equation has not 
been investigated. The external temperature field need not be characterized by only two fixed 
temperatures (this case occurs of course very often). If there are more fixed temperatures, other 
dimensionless parameters derived from them appear in the formulation and their influence must 

be examined. 
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